Hailo-8 M.2 module A+E Key 2230 (26 TOPS)

SKU: Hailo-HM218B1C2KAE-009
EAN / Barcode:
Lieferfrist: Sofort versandfertig, Lieferfrist 1-2 Tage

Preis:
Angebotspreis195,00 €

Inkl. Steuern Versand wird an der Kasse berechnet

Lager:
Auf Lager

Beschreibung

Hailo-8 ist ein moderner KI-Beschleunigerchip für Deep Neural Networks. Hailo-8 ist insbesondere für Vision-Anwendungen geeignet. Das ist die M.2 A+E-key 2230 Variante des Hailo-8 AI Processors. Zum Betrieb wird eine Host-CPU benötigt. 

Technische Daten

HAILO-8 AI Accelerator

  • bis zu 26 TOPS INT8 performance (trillion operations per second = 26 Billionen Rechenoperationen pro Sekunde / 2,6 * 10^13 Rechenoperationen)
  • Formfaktor: M.2 2230 A+E-Key 
  • Abmessungen: 22×30 mm
  • Interface: PCIe Gen-3.0, 2 Lanes (bis zu 16 Gbs)
  • TDP: 6.93 W

Softwareunterstützung (Inferencing)

  • führt Deep Learning Neural Networks mit hoher Leistungseffizienz aus
  • besonders gut für CNNs geeignet (Computer Vision Anwendungen)
  • ermöglicht parallel mehrere Modelle & Streams zu prozessieren
  • Linux, Windows
  • Unterstützt TensorFlow, TensorFlow Lite, Keras, PyTorch, ONNX
  • Kompatibel mit ARM und x86 Systemen. 

Hinweise

  • CE & FCC Class A zertifiziert
  • Betriebstemperatur: -40°C - +85°C (Umgebungstemperatur) für die HM218B1C2KAE Variante (industrieller Temperaturbereich)
  • Optional auch als Hailo-8 starter Kit erhältlich

(siehe HAILO Website als Grafikquelle mit Erklärung der Testparameter)

Für den Betrieb muss sichergestellt werden, dass die Hitze die das Hailo-8 Modul erzeugt abgeführt wird. Das Modul wurde so designed dass die meiste Hitze zur metallischen Abdeckung des Chips (Top Surface of the Package) hin abgeleitet wird. Wir empfehlen die Application Note "Hailo-8 AI Acceleration Module Thermal Design Considerations" zu lesen. 

  • es gibt zwei Varianten des Moduls. Abgebildet ist die MEA Konfiguration. Eine weitere, funktionell und leistungsmäßig identische MEB Konfiguration existiert, aufgrund von einer alternativen Auslegung der Stromversorgungskomponenten. 

Dokumentation & Downloads

Beratung durch buyzero

Wir beraten Sie ob Ihr Modell auf dem HAILO-8 lauffähig ist, und ob Sie Ihr Projekt mit Hilfe von HAILO-8 umsetzen können. Kontaktieren Sie uns dazu bitte.

FAQ

Was sind Beispielanwendungen für dieses Modul?

Man kann mit diesem Modul sogenannte Deep Learning Algorithmen, insbesondere CNNs (convolutional neural networks), beschleunigen. 

Dazu gehören:

  • Pose Estimation - Schätzung der Pose eines Menschen
  • Objekterkennung mit Bounding Boxes (bspw. wo ist ein Fahrrad im Bild, und was ist es)
  • Segmentierung - markiere die Bereiche eines Bildes die eine Banane einnimmt
  • Nummernschilderkennung
  • Gesichtserkennung
  • u.v.m.

Kann ich Modelle für den HAILO-8L auch auf einem HAILO-8 laufen lassen?

Ja, das ist möglich! Modelle die für den HAILO-8L kompiliert worden sind laufen auch auf einem HAILO-8.

Ich brauche eine höhere Durchsatzrate / Framerate

Das HAILO-8 M.2 M-key Modul hat eine Anbindung mit 4 PCIe Gen-3.0 Lanes, während das B+M Modul und das A+E Modul nur 2 Lanes nutzen können. Eine höhere Framerate könnte bspw. auch durch die Limitation durch die PCI Express Bandbreite beeinflusst sein - wir empfehlen daher als erstes die M-Key Variante auszuprobieren. Dabei sollte natürlich sichergestellt werden, dass der Host-Computer die vier PCIe Lanes bereitstellen kann. Falls die Framerate immer noch unbefriedigend ist, lesen Sie bitte die nächste Frage (Ich benötige mehr TOPS). 

Ich benötige mehr TOPS, da ich eine komplexe Anwendung habe, was kann ich tun?

Dieses HAILO-8 Modul, hat 26 TOPS

Wir bieten in unserem Shop auch eine Lösung mit 52 TOPS - das Biscotti Modul an. Es nutzt dazu zwei HAILO-8 Module, und hat einen EDSFF E1.S Anschluss - der in Storage Servern zum Einsatz kommt. 

Dadurch kann das Biscotti Dual HAILO Modul auch in Clustern verbaut werden, und in einem 19'' Server bspw. auf 1600 TOPS skaliert werden. Wir stehen gerne bei Fragen zur Verfügung!

Ist der HAILO-8 eine gute Alternative zum Google Coral? 

Ja, der HAILO-8 ist für Anwender mit höheren Leistungsansprüchen eine gute Alternative zur Google Coral Serie. 

Google Coral kann hingegen gut in Anwendungen zum Einsatz kommen wo 4 TOPS Rechenleistung ausreichen, da sie günstiger sind. 

Kann ich LLMs auf dem HAILO-8 ausführen, bpsw. LLAMA?

LLMs = Large Language Modelle (so etwas wie ChatGPT / GPT4-o, bzw. LLAMA, Falcon, usw.)

Nein, dafür ist der HAILO-8 nicht ausgelegt. Grafikkarten auf denen diese LLMs typischerweise laufen haben schnellen direkt angebundenen Speicher. Der HAILO-8 hat unter anderem nicht genügend Speicher, um diese Modelle laden zu können. 

HAILO hat ein zukünftiges Produkt, den HAILO-10 angekündigt. Dieser wird eine Speicherschnittstelle haben, und auch GenAI Anwendungen wie LLMs besser unterstützen.

Kann ich damit Modelle trainieren?

Nein, der HAILO-8 ist ausschließlich für die Inferenz (int8) gedacht. Zum Training von Modellen wird typischerweise eine klassische GPU eingesetzt.

HAILO bietet hier Unterstützung mit einer Reihe von vorgebauten Docker-Containern, mit denen Modelle trainiert und auch angepasst werden können.

Das Model Build Environment wird wie im Diagramm gezeigt auf einem eigenen dafür vorgesehenen Computer betrieben, der über die notwendigen technischen Parameter verfügt. HAILO-8 selbst ist für Edge-Anwendungen gedacht, für die Inferenz, zusammen mit der HailoRT Runtime.

Wir unterstützen gerne bei technischen Fragen zu Modellen.

Physikalische Abmessungen

Alle Abmessungen in mm. Nur als Referenz, nicht für 3D-Modellierung geeignet.

Misc

 

Benötigen Sie Beratung oder ein Angebot zu diesem Artikel?

Customer Reviews

Be the first to write a review
0%
(0)
0%
(0)
0%
(0)
0%
(0)
0%
(0)

Zuletzt gesehen